Product Specifications for Double End-Break Switches

1. General

a) This specification covers the design, manufacture, and shipment of double end-break switches, both air-break and load-break configurations, for substation and transmission switching applications
b) All switches furnished shall conform to all applicable IEEE, NEMA, and ANSI standards
c) The switch manufacturer shall furnish all parts required to install a complete operating switch, including insulators, switch bases, operating mechanism, and equipment mounting hardware; if insulators are not required, this shall be specified by the customer
d) The pole or mounting structure, bus conductor, terminal connectors, dead-end assemblies, guying and grounding materials, through bolts and miscellaneous pole or structure hardware will be provided by Others
e) This equipment will be factory assembled when supplied with insulators, and field assembled when supplied without insulators; field assembly and installation will be by Others

2. Applicable Standards and Specifications

a) The following standards shall form a part of this specification unless otherwise stated:

ANSI C29.9	Wet-Process Porcelain Insulators
ANSI C37.32	Schedules of Preferred Ratings, Manufacturing Specifications, and
	Application Guide for High Voltage Air Switches
ANSI C37.34	Test Code for High-Voltage Air Switches
ASTM 123	Zinc Coating (Hot Dip) on Iron and Steel Hardware
NEMA SG6	Power Switching Equipment

b) All switches furnished shall be in accordance with the latest versions of the appropriate specifications.
c) The switch shall be a double end-break, SEECO type "D", "DMH", or "DL", or approved equal

3. Materials and Workmanship

a) The equipment shall be new and of standard commercial, first-grade quality as to materials, workmanship, and design, in accordance with the best engineering practice, and shall be such as has been proven to be suitable for the intended purpose.
b) All welding shall be done by welders experienced in the process to be used and in a manner evidencing good workmanship.

4. Environmental Conditions

a) Temperature - Equipment supplied shall be adequate for an operating range of - 40 degrees C to +55 degrees C
b) Humidity - Equipment supplied shall be operated under humidity of up to 95% at a temperature of 40 degrees C
c) Environment - Equipment supplied shall provide reliable performance in environments with high exposure to salt, minerals, chemicals, or windborne particulate

Product Specifications for Double End-Break Switches

d) Ice - Equipment supplied shall operate adequate with a build-up of $3 / 4$ " clear ice

5. Ratings and Type

a) Type - Switches shall be group operated double end-break switches, mounted horizontal upright, vertical, underhung, with parallel or Vee insulator configurations
b) Ratings - Switches shall meet or exceed the following ratings

Rated Voltage
Rated Maximum Voltage
Rated Frequency
Rated Continuous Current
Rated Momentary Current
Rated Withstand Voltage (BIL)

34.5 kV through 230 kV
38 kV through 242 kV
60 Hz
600 Amp through 2,000 Amp
40 kA through 100 kA
200 kV through 1050 kV

6. Switch Design and Construction

a) Jaw Contacts
i) All jaw contacts shall be silver to copper and designed so that wiping action is provided with a minimum of roughening or wear on the silver surfaces
ii) The design of the jaw contacts shall be such that the resultant magnetic forces during short circuit will tend to hold the blade in the closed position and maintain contact pressure; blade locks or other latching devices are not permitted
iii) Switch contacts shall be the high pressure, single point contact type with a minimum of 100 lbs pressure on each silver contact
iv) Contact pressure shall be maintained by separate back-up spring members independent of the main current path. Contact members shall be independently adjustable for proper contact deflection
v) Wear of contacts shall not result in diminished contact performance due to reduction of contact pressure. The number and size of contact fingers shall be sufficient to ensure adequate transfer of rated current from the blade to the jaw
vi) All contacts shall be self-aligning and self-adjusting and designed to ensure firm positive contact
b) Switch Blade
i) Each switch blade shall form one solid piece and shall be so assembled that no part of the blade can move relative to another
ii) Ends of switch blades shall be completely closed except for drain holes
iii) Switch blades shall be high conductivity copper alloy and of tubular construction
c) Terminal Pads
i) Terminal pads on each end of the switch shall be located at the same height above the insulator
ii) Terminal pads shall have flat, machined surfaces

Product Specifications for Double End-Break Switches

iii) Terminal pads shall be NEMA standard 2-hole for 600 ampere switches and NEMA standard 4-hole for switches rated 1200 to 2000 amperes
d) Switch Assembly
i) Switches of the same rating and design shall have interchangeable parts
ii) The switch shall be so designed that when installed, its operation will not be prevented by accumulated water, sleet, ice, snow, dirt, or other atmospheric contamination.
iii) Metal live parts shall be non-rusting and corrosion resistant. All current carrying parts shall be non-ferrous.
iv) Live parts shall be designed to use at least three of the four mounting holes in the insulator or insulator adapter.
v) Bolts, screws, and pins shall be provided with lock washers, keys, or equivalent locking facilities
vi) No part of the switch blade or jaw assembly shall project lengthwise beyond the terminal pads
e) Switch Mechanism
i) The mechanism shall be so designed that all three phases are in positive continuous control throughout the entire operating cycle
ii) Each rotating insulator stack shall have double roller or double ball bearings in the base bearing assembly. Bearing housings shall be weatherproof. Open type bearing assemblies must be rustproof and non-corroding, and they shall be designed to completely drain water and moisture accumulation.
iii) All roller or ball bearings shall be greaseless or maintenance free type
iv) Rotating insulator stacks with 5 " bolt circles (115 kV and greater) shall have leveling provisions at the base of each stack; rotating insulator stacks with 3 " bolt circles (69 kV and below) may employ shims for alignment
v) All operating pipes shall be sufficiently rigid to maintain positive control under the most adverse conditions, including a heavily iced switch and operating mechanism.
vi) It shall be impossible, after proper and final adjustment has been made, for any part of the mechanism to be displaced sufficiently, at any point in the travel, to allow improper functioning of the switch when the switch is opened or closed at any operating speed
vii) All ferrous parts, except springs, shall be hot-dip galvanized in accordance with ASTM A153, latest revision
f) Operating Mechanism
i) The operating mechanism shall be positively toggled when the switch is closed to ensure correct, complete switch operation and to provide operating personnel with visual confirmation
ii) All vertical operating shafts shall be supported on ball or roller thrust bearings. Guides shall be provided on the vertical shaft at regular intervals to ensure proper operation.

Product Specifications for Double End-Break Switches

iii) Switches of all voltages will be furnished with a horizontal swing handle. Geared mechanisms shall be acceptable, if required by customer, to ensure proper operation.
iv) Provision shall be made for padlocking the mechanism in the open or closed position.
v) A flexible copper braid shunt shall be provided on the operating mechanism for ground connections by Others
vi) The maximum operating effort shall be fifty pounds for a swing handle operator or thirty-five pounds for a manually operated gear mechanism
g) Switch Bases
i) Switch bases shall be constructed of ASTM A36 steel with sufficient rigidity to maintain proper insulator alignment and contact engagement under all climatic and loading conditions. All steel shall be hot-dipped galvanized in accordance with ASTM A123.
ii) Switch bases shall be single channel construction for switches rated 69 kV and below; for switches rated 115 kV and up, switch bases shall be welded or bolted double channel construction
iii) When application design considerations require reduction of installed weight, switch bases may be constructed of 6061-T6 aluminum, with member sizes specified to maintain proper rigidity
h) Insulators
i) Insulators will be supplied as standard equipment on all voltage ratings unless specified otherwise on customer's RFQ or manufacturer's proposal
ii) Insulators will conform with ANSI C29.8 and C29.9.
iii) Insulators supplied will be standard strength, ANSI 70 sky-tone gray unless specified otherwise on customer's RFQ or manufacturer's proposal
iv) Insulators will be wet-process porcelain; polymer style insulators can also be supplied at customer request; consult the manufacturer for guidance on appropriate applications
i) Arcing Horns
i) Switches will be supplied with standard wipe-type arcing horns of hard drawn copper alloy rod
ii) Switches requiring reduced current, full voltage interruption capability (line charging or transformer magnetizing applications) shall utilize a high-speed, snap-out arcing horn
a) Horns to be constructed from beryllium or stainless steel with appropriate mechanical and electrical attributes to maintain function throughout the life of the switch without degradation of spring characteristics
b) Horn shall be of a tapered design to provide maximum tip speed
c) Arcing horn assembly shall include a mechanical stop (snubber) to prevent return/rebound of the horn and possible re-strike

Product Specifications for Double End-Break Switches

j) Interrupter
i) Switches requiring reduced voltage, full current interruption capability (loopsplitting applications) shall utilize a single bottle, reduced voltage vacuum interrupter to provide a confined arc when switching
ii) Switches requiring full voltage, full current interruption capability shall utilize a multi-bottle vacuum interrupter
a) The number of bottles per interrupter stack to be properly coordinated with the expected recovery voltage of the switching application and the open gap across the switch
iii) The interrupter unit shall be designed to ensure high speed interruption regardless of the operational speed of the switch
iv) When not being operated, the interrupter unit shall be out of the current path so that it is not subject to fault currents
v) When the interrupter employs a dielectric to enhance the interrupting rating of the enclosed vacuum bottle, accidental loss or disposal of the dielectric shall not pose a risk to the health of utility personnel or the environment; SF6 is not acceptable as a dielectric
k) Nameplate
i) All switches shall be equipped with a non-corrosive nameplate in accordance with ANSI C37.30, permanently attached with stainless steel screws or rivets
ii) Nameplate shall include the appropriate catalog number, electrical ratings, and manufacturer's sales order number for proper and complete identification of the switch

1) Shipping
i) Switches of all kV ratings shall be shipped completely assembled and adjusted, with insulators, base bearings, and live parts bolted into position on bases insulators, base bearings, and live parts bolted into position on bases
ii) Operating pipe will be shipped unassembled and banded together, with proper identification to the switch
iii) All other switch components shall be shipped in a wooden crate, with proper identification to the switch
iv) All switches and accessories shall be shipped FOB factory, freight prepaid and add unless otherwise noted
